Synthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perception
| dc.contributor.author | Hua, Yining | |
| dc.contributor.author | Yi, Dewei | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2023-08-24T23:07:54Z | |
| dc.date.available | 2023-08-24T23:07:54Z | |
| dc.date.embargoedUntil | 2023-08-25 | |
| dc.date.issued | 2022-05-31 | |
| dc.description | This work was supported by the University of Aberdeen Internal Funding to Pump-Prime Interdisciplinary Research and Impact under grant number SF10206-57 | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 8 | |
| dc.format.extent | 5500590 | |
| dc.identifier | 199189975 | |
| dc.identifier | 11e6a69e-1609-4a23-bd46-94b856357d37 | |
| dc.identifier | 85113859295 | |
| dc.identifier | 85113859295 | |
| dc.identifier | 000752019100037 | |
| dc.identifier.citation | Hua, Y & Yi, D 2022, 'Synthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perception', IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3248 - 3255. https://doi.org/10.1109/TII.2021.3107785 | en |
| dc.identifier.doi | 10.1109/TII.2021.3107785 | |
| dc.identifier.iss | 5 | en |
| dc.identifier.issn | 1551-3203 | |
| dc.identifier.other | ORCID: /0000-0003-1702-9136/work/99981585 | |
| dc.identifier.other | ORCID: /0000-0002-3377-6943/work/99076172 | |
| dc.identifier.uri | https://hdl.handle.net/2164/21543 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85113859295&partnerID=8YFLogxK | en |
| dc.identifier.url | https://pure.roehampton.ac.uk/portal/en/publications/21eae5f9-a618-4c35-8408-140b5f9fe065 | en |
| dc.identifier.vol | 18 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | IEEE Transactions on Industrial Informatics | en |
| dc.subject | Image segmentation | en |
| dc.subject | convolution neural networks | en |
| dc.subject | domain adaptation | en |
| dc.subject | deep learning | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject | Control and Systems Engineering | en |
| dc.subject | Information Systems | en |
| dc.subject | Computer Science Applications | en |
| dc.subject | Electrical and Electronic Engineering | en |
| dc.subject | Other | en |
| dc.subject | SF10206-57 | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Synthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perception | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Hua_etal_TII_Synthetic_To_Realistic_AAM.pdf
- Size:
- 5.25 MB
- Format:
- Adobe Portable Document Format
