University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Synthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perception

dc.contributor.authorHua, Yining
dc.contributor.authorYi, Dewei
dc.contributor.institutionUniversity of Aberdeen.Computing Scienceen
dc.contributor.institutionUniversity of Aberdeen.Machine Learningen
dc.date.accessioned2023-08-24T23:07:54Z
dc.date.available2023-08-24T23:07:54Z
dc.date.embargoedUntil2023-08-25
dc.date.issued2022-05-31
dc.descriptionThis work was supported by the University of Aberdeen Internal Funding to Pump-Prime Interdisciplinary Research and Impact under grant number SF10206-57en
dc.description.statusPeer revieweden
dc.format.extent8
dc.format.extent5500590
dc.identifier199189975
dc.identifier11e6a69e-1609-4a23-bd46-94b856357d37
dc.identifier85113859295
dc.identifier85113859295
dc.identifier000752019100037
dc.identifier.citationHua, Y & Yi, D 2022, 'Synthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perception', IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3248 - 3255. https://doi.org/10.1109/TII.2021.3107785en
dc.identifier.doi10.1109/TII.2021.3107785
dc.identifier.iss5en
dc.identifier.issn1551-3203
dc.identifier.otherORCID: /0000-0003-1702-9136/work/99981585
dc.identifier.otherORCID: /0000-0002-3377-6943/work/99076172
dc.identifier.urihttps://hdl.handle.net/2164/21543
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85113859295&partnerID=8YFLogxKen
dc.identifier.urlhttps://pure.roehampton.ac.uk/portal/en/publications/21eae5f9-a618-4c35-8408-140b5f9fe065en
dc.identifier.vol18en
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Industrial Informaticsen
dc.subjectImage segmentationen
dc.subjectconvolution neural networksen
dc.subjectdomain adaptationen
dc.subjectdeep learningen
dc.subjectQA75 Electronic computers. Computer scienceen
dc.subjectControl and Systems Engineeringen
dc.subjectInformation Systemsen
dc.subjectComputer Science Applicationsen
dc.subjectElectrical and Electronic Engineeringen
dc.subjectOtheren
dc.subjectSF10206-57en
dc.subject.lccQA75en
dc.titleSynthetic to Realistic Imbalanced Domain Adaption for Urban Scene Perceptionen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Hua_etal_TII_Synthetic_To_Realistic_AAM.pdf
Size:
5.25 MB
Format:
Adobe Portable Document Format

Collections