Model pruning enables localized and efficient federated learning for yield forecasting and data sharing
| dc.contributor.author | Li, Andy Hanou | |
| dc.contributor.author | Markovic, Milan | |
| dc.contributor.author | Edwards, Pete | |
| dc.contributor.author | Leontidis, Georgios | |
| dc.contributor.institution | University of Aberdeen.Natural & Computing Sciences | en |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Agents at Aberdeen | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2023-12-07T20:08:00Z | |
| dc.date.available | 2023-12-07T20:08:00Z | |
| dc.date.issued | 2024-05-15 | |
| dc.description | The work described here was funded by the EPSRC ‘Enhancing Agri-Food Transparent Sustainability’ (EATS) project, United Kingdom (grant number: EP/V042270/1) and by a University of Aberdeen Ph.D. studentship, United Kingdom. We also thank the University of Aberdeen’s HPC facility Maxwell. Open Access via the Elsevier Agreement | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 12 | |
| dc.format.extent | 1315645 | |
| dc.identifier | 282742138 | |
| dc.identifier | 27572bde-56e8-470c-9cb3-cbd9fca690a3 | |
| dc.identifier | 85180562597 | |
| dc.identifier.citation | Li, A H, Markovic, M, Edwards, P & Leontidis, G 2024, 'Model pruning enables localized and efficient federated learning for yield forecasting and data sharing', Expert Systems with Applications, vol. 242, 122847, pp. 1-12. https://doi.org/10.1016/j.eswa.2023.122847 | en |
| dc.identifier.doi | 10.1016/j.eswa.2023.122847 | |
| dc.identifier.issn | 0957-4174 | |
| dc.identifier.other | ORCID: /0000-0002-4527-9186/work/148505193 | |
| dc.identifier.other | ORCID: /0000-0001-6671-5568/work/148506881 | |
| dc.identifier.uri | https://hdl.handle.net/2164/22372 | |
| dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S0957417423033493 | en |
| dc.identifier.vol | 242 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Expert Systems with Applications | en |
| dc.subject | Substantive connection via an eligible employment contract | en |
| dc.subject | SDG 13 - Climate Action | en |
| dc.subject | SDG 2 - Zero Hunger | en |
| dc.subject | 2040 Data and Artificial Intelligence | en |
| dc.subject | Federated Learning | en |
| dc.subject | Pruning | en |
| dc.subject | Deep Learning | en |
| dc.subject | yield forecasting | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject | Artificial Intelligence | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Model pruning enables localized and efficient federated learning for yield forecasting and data sharing | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Leontidis_1-s2.0-S0957417423033493-main.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format
