Machine learning prediction of critical transition and system collapse
| dc.contributor.author | Kong, Ling-Wei | |
| dc.contributor.author | Fan, Hua-Wei | |
| dc.contributor.author | Grebogi, Celso | |
| dc.contributor.author | Lai, Ying-Cheng | |
| dc.contributor.institution | University of Aberdeen.Physics | en |
| dc.contributor.institution | University of Aberdeen.Institute for Complex Systems and Mathematical Biology (ICSMB) | en |
| dc.date.accessioned | 2021-01-29T14:02:01Z | |
| dc.date.available | 2021-01-29T14:02:01Z | |
| dc.date.issued | 2021-01-28 | |
| dc.description | ACKNOWLEDGMENTS We would like to acknowledge support from the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through Grant No. N00014-16-1-2828. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 14 | |
| dc.format.extent | 2601846 | |
| dc.identifier | 186549781 | |
| dc.identifier | 91a9f680-0eb5-4199-b320-933ee2923d05 | |
| dc.identifier | 85102664572 | |
| dc.identifier.citation | Kong, L-W, Fan, H-W, Grebogi, C & Lai, Y-C 2021, 'Machine learning prediction of critical transition and system collapse', Physical Review Research, vol. 3, no. 1, 013090. https://doi.org/10.1103/PhysRevResearch.3.013090 | en |
| dc.identifier.doi | 10.1103/PhysRevResearch.3.013090 | |
| dc.identifier.iss | 1 | en |
| dc.identifier.issn | 2643-1564 | |
| dc.identifier.other | RIS: urn:B310CEA4E7566BEC3D682C33410EA068 | |
| dc.identifier.other | RIS: 10.1103/PhysRevResearch.3.013090 | |
| dc.identifier.other | ArXiv: http://arxiv.org/abs/2012.01545v1 | |
| dc.identifier.other | ORCID: /0000-0002-9811-4617/work/107062302 | |
| dc.identifier.uri | https://hdl.handle.net/2164/15747 | |
| dc.identifier.url | http://arxiv.org/abs/2012.01545v1 | en |
| dc.identifier.vol | 3 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Physical Review Research | en |
| dc.subject | Substantive connection via an eligible employment contract | en |
| dc.subject | cs.LG | en |
| dc.subject | cs.AI | en |
| dc.subject | math.DS | en |
| dc.subject | physics.data-an | en |
| dc.subject | QC Physics | en |
| dc.subject | QA Mathematics | en |
| dc.subject.lcc | QC | en |
| dc.subject.lcc | QA | en |
| dc.title | Machine learning prediction of critical transition and system collapse | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Kong_et_al_PRR_MachineLearningPrediction_VoR.pdf
- Size:
- 2.48 MB
- Format:
- Adobe Portable Document Format
