Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network
| dc.contributor.author | Shi, Wei | |
| dc.contributor.author | Hu, Lehan | |
| dc.contributor.author | Lin, Zaibin | |
| dc.contributor.author | Zhang, Lixian | |
| dc.contributor.author | Wu, Jun | |
| dc.contributor.author | Chai, Wei | |
| dc.contributor.institution | University of Aberdeen.Engineering | en |
| dc.date.accessioned | 2024-08-12T10:51:01Z | |
| dc.date.available | 2024-08-12T10:51:01Z | |
| dc.date.issued | 2023-07-15 | |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 24 | |
| dc.format.extent | 16405210 | |
| dc.identifier | 291714708 | |
| dc.identifier | cc0668d0-7a24-482a-aea2-fa08ae1066a0 | |
| dc.identifier | 85154600182 | |
| dc.identifier.citation | Shi, W, Hu, L, Lin, Z, Zhang, L, Wu, J & Chai, W 2023, 'Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network', Ocean Engineering, vol. 280, 114558. https://doi.org/10.1016/j.oceaneng.2023.114558 | en |
| dc.identifier.doi | 10.1016/j.oceaneng.2023.114558 | |
| dc.identifier.issn | 0029-8018 | |
| dc.identifier.other | ORCID: /0000-0002-6502-8149/work/163806619 | |
| dc.identifier.uri | https://hdl.handle.net/2164/24011 | |
| dc.identifier.url | http://dx.doi.org/10.1016/j.oceaneng.2023.114558 | en |
| dc.identifier.vol | 280 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Ocean Engineering | en |
| dc.subject | Floating offshore wind turbine | en |
| dc.subject | Deep learning | en |
| dc.subject | Response prediction | en |
| dc.subject | Multi-input LSTM model | en |
| dc.subject | Second-order hydrodynamic | en |
| dc.subject | TA Engineering (General). Civil engineering (General) | en |
| dc.subject.lcc | TA | en |
| dc.title | Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
