University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network

dc.contributor.authorShi, Wei
dc.contributor.authorHu, Lehan
dc.contributor.authorLin, Zaibin
dc.contributor.authorZhang, Lixian
dc.contributor.authorWu, Jun
dc.contributor.authorChai, Wei
dc.contributor.institutionUniversity of Aberdeen.Engineeringen
dc.date.accessioned2024-08-12T10:51:01Z
dc.date.available2024-08-12T10:51:01Z
dc.date.issued2023-07-15
dc.description.statusPeer revieweden
dc.format.extent24
dc.format.extent16405210
dc.identifier291714708
dc.identifiercc0668d0-7a24-482a-aea2-fa08ae1066a0
dc.identifier85154600182
dc.identifier.citationShi, W, Hu, L, Lin, Z, Zhang, L, Wu, J & Chai, W 2023, 'Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network', Ocean Engineering, vol. 280, 114558. https://doi.org/10.1016/j.oceaneng.2023.114558en
dc.identifier.doi10.1016/j.oceaneng.2023.114558
dc.identifier.issn0029-8018
dc.identifier.otherORCID: /0000-0002-6502-8149/work/163806619
dc.identifier.urihttps://hdl.handle.net/2164/24011
dc.identifier.urlhttp://dx.doi.org/10.1016/j.oceaneng.2023.114558en
dc.identifier.vol280en
dc.language.isoeng
dc.relation.ispartofOcean Engineeringen
dc.subjectFloating offshore wind turbineen
dc.subjectDeep learningen
dc.subjectResponse predictionen
dc.subjectMulti-input LSTM modelen
dc.subjectSecond-order hydrodynamicen
dc.subjectTA Engineering (General). Civil engineering (General)en
dc.subject.lccTAen
dc.titleShort-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural networken
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
OE-D-22-04902_clean.pdf
Size:
15.65 MB
Format:
Adobe Portable Document Format

Collections