University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Optimal statistical damage detection and classification in an experimental wind turbine blade using minimum instrumentation

dc.contributor.authorHoell, Simon
dc.contributor.authorOmenzetter, Piotr
dc.contributor.editorMeyendorf, Norbert G.
dc.contributor.institutionUniversity of Aberdeen.Engineeringen
dc.contributor.institutionUniversity of Aberdeen.Energyen
dc.date.accessioned2017-09-12T11:00:37Z
dc.date.available2017-09-12T11:00:37Z
dc.date.issued2017-04-19
dc.description.statusPeer revieweden
dc.format.extent12
dc.format.extent3802005
dc.identifier104835175
dc.identifier244de867-b5b9-47b4-9e6e-cf54bfded606
dc.identifier85021821176
dc.identifier.citationHoell, S & Omenzetter, P 2017, Optimal statistical damage detection and classification in an experimental wind turbine blade using minimum instrumentation. in N G Meyendorf (ed.), Smart Materials and Nondestructive Evaluation for Energy Systems 2017. vol. 10171, 101710D, SPIE, Smart Materials and Nondestructive Evaluation for Energy Systems 2017, Portland, United States, 27/03/17. https://doi.org/10.1117/12.2257228en
dc.identifier.citationconferenceen
dc.identifier.doi10.1117/12.2257228
dc.identifier.isbn9781510608276
dc.identifier.urihttp://hdl.handle.net/2164/9287
dc.identifier.urlhttps://www.scopus.com/pages/publications/85021821176en
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofSmart Materials and Nondestructive Evaluation for Energy Systems 2017en
dc.subjectDamage classificationen
dc.subjectPrincipal component analysisen
dc.subjectStatistical classificationen
dc.subjectTime series methodsen
dc.subjectVibration analysisen
dc.subjectWind turbinesen
dc.subjectTA Engineering (General). Civil engineering (General)en
dc.subjectElectronic, Optical and Magnetic Materialsen
dc.subjectCondensed Matter Physicsen
dc.subjectComputer Science Applicationsen
dc.subjectApplied Mathematicsen
dc.subjectElectrical and Electronic Engineeringen
dc.subject.lccTAen
dc.titleOptimal statistical damage detection and classification in an experimental wind turbine blade using minimum instrumentationen
dc.typeBook itemen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Accepted_Manuscript.pdf
Size:
3.63 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
8.29 KB
Format:
Plain Text
Description: