An Empirical Approach for Extreme Behavior Identification through Tweets Using Machine Learning
| dc.contributor.author | Sharif, Waqas | |
| dc.contributor.author | Mumtaz, Shahzad | |
| dc.contributor.author | Shafiq, Zubair | |
| dc.contributor.author | Riaz, Omer | |
| dc.contributor.author | Ali, Tenvir | |
| dc.contributor.author | Husnain, Mujtaba | |
| dc.contributor.author | Choi, Guy San | |
| dc.date.accessioned | 2024-03-11T13:57:00Z | |
| dc.date.available | 2024-03-11T13:57:00Z | |
| dc.date.issued | 2019-09-06 | |
| dc.description | This research was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program. No.10063130, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1006159), and MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program (IITP-2019-2016-0-00313) supervised by the IITP (Institute for Information & communications Technology Promotion), and the 2018 Yeungnam University Research Grant. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 20 | |
| dc.format.extent | 2421573 | |
| dc.identifier | 281445639 | |
| dc.identifier | 75e56381-7424-4a87-9fdc-a5aa8124e594 | |
| dc.identifier | 85072407040 | |
| dc.identifier.citation | Sharif, W, Mumtaz, S, Shafiq, Z, Riaz, O, Ali, T, Husnain, M & Choi, G S 2019, 'An Empirical Approach for Extreme Behavior Identification through Tweets Using Machine Learning', Applied Sciences, vol. 9, no. 18, 3723. https://doi.org/10.3390/app9183723 | en |
| dc.identifier.doi | 10.3390/app9183723 | |
| dc.identifier.iss | 18 | en |
| dc.identifier.issn | 2076-3417 | |
| dc.identifier.other | crossref: 10.3390/app9183723 | |
| dc.identifier.other | ORCID: /0000-0003-2606-2405/work/143115729 | |
| dc.identifier.uri | https://hdl.handle.net/2164/22959 | |
| dc.identifier.url | https://www.mdpi.com/2076-3417/9/18/3723 | en |
| dc.identifier.vol | 9 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Applied Sciences | en |
| dc.subject | SDG 16 - Peace, Justice and Strong Institutions | en |
| dc.subject | cyber-extreme | en |
| dc.subject | en | |
| dc.subject | exploratory data analysis | en |
| dc.subject | principal component analysis | en |
| dc.subject | term frequency—inverse document frequency | en |
| dc.subject | support vector machine | en |
| dc.subject | ensemble classification | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject.lcc | QA75 | en |
| dc.title | An Empirical Approach for Extreme Behavior Identification through Tweets Using Machine Learning | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Sharif_AS_EmpiricalApproachExtreme_VOR.pdf
- Size:
- 2.31 MB
- Format:
- Adobe Portable Document Format
