University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Machine learning for improved size estimation of complex marine particles from noisy holographic images

dc.contributor.authorLiu, Zonghua
dc.contributor.authorTakeuchi, Marika
dc.contributor.authorContreras, Yéssica
dc.contributor.authorThevar, Thangavel
dc.contributor.authorNimmo-Smith, Alex
dc.contributor.authorWatson, John
dc.contributor.authorGiering, Sarah L. C.
dc.contributor.institutionUniversity of Aberdeen.Engineeringen
dc.contributor.institutionUniversity of Aberdeen.Engineeringen
dc.date.accessioned2025-08-18T10:34:02Z
dc.date.available2025-08-18T10:34:02Z
dc.date.issued2025-08-15
dc.descriptionWe thank Richard Lampitt, Morten Iversen and Kevin Saw for the deployment of the Red Camera Frame, and the captain, crew and scientists of the research cruise DY086. Our thanks extend to Nick Burns and Mike Ockwell from Hi-Z 3D LTD (London, UK) for their contributions in developing FastScan that significantly facilitates hologram process.en
dc.description.statusPeer revieweden
dc.format.extent16
dc.format.extent8139263
dc.identifier308017398
dc.identifierf8a45416-86aa-49d8-b97b-9343f25ed222
dc.identifier105014607185
dc.identifier.citationLiu, Z, Takeuchi, M, Contreras, Y, Thevar, T, Nimmo-Smith, A, Watson, J & Giering, S L C 2025, 'Machine learning for improved size estimation of complex marine particles from noisy holographic images', Frontiers in Marine Science, vol. 12, 1587939. https://doi.org/10.3389/fmars.2025.1587939en
dc.identifier.doi10.3389/fmars.2025.1587939
dc.identifier.issn2296-7745
dc.identifier.otherRIS: urn:7A15242E2B0495107404A0E0DF0F453D
dc.identifier.urihttps://hdl.handle.net/2164/25869
dc.identifier.vol12en
dc.language.isoeng
dc.relation.ispartofFrontiers in Marine Scienceen
dc.subjectSDG 14 - Life Below Wateren
dc.subjectsubsea digital holographyen
dc.subjecthologram processingen
dc.subjectmachine learningen
dc.subjectsize estimationen
dc.subjectparticle size distributionsen
dc.subjectGC Oceanographyen
dc.subject.lccGCen
dc.titleMachine learning for improved size estimation of complex marine particles from noisy holographic imagesen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Liu_etal_FiMS_Machine_Learning_for_VOR.pdf
Size:
7.76 MB
Format:
Adobe Portable Document Format

Collections