Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments
| dc.contributor.author | Alhnaity, Bashar | |
| dc.contributor.author | Pearson, Simon | |
| dc.contributor.author | Leontidis, Georgios | |
| dc.contributor.author | Kollias, Stefanos | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en | 
| dc.contributor.institution | University of Aberdeen.Centre for Energy Transition | en | 
| dc.contributor.institution | University of Aberdeen.Machine Learning | en | 
| dc.date.accessioned | 2021-04-01T20:31:01Z | |
| dc.date.available | 2021-04-01T20:31:01Z | |
| dc.date.issued | 2020-11-23 | |
| dc.description | Funding Information: This work is part of EU Interreg SMARTGREEN project (2017-2021). We would like to thank all the growers (UK & EU), for providing the data. Their valuable feedback, suggestions and comments are highly appreciated to increase the overall quality of this work. | en | 
| dc.format.extent | 7 | |
| dc.format.extent | 508485 | |
| dc.identifier | 163638322 | |
| dc.identifier | 1a2ec492-d434-4684-94c0-c165ee7c5e25 | |
| dc.identifier | 85097321834 | |
| dc.identifier.citation | Alhnaity, B, Pearson, S, Leontidis, G & Kollias, S 2020, Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments. in Acta Horticulturae : Greensys 2019 - International Symposium on Advanced Technologies and Management for Innovative Greenhouses. vol. 1296, Acta Horticulturae, International Society for Horticultural Science, pp. 425-431. https://doi.org/10.17660/ActaHortic.2020.1296.55 | en | 
| dc.identifier.doi | 10.17660/ActaHortic.2020.1296.55 | |
| dc.identifier.isbn | 0567-7572 | |
| dc.identifier.isbn | 2406-6168 | |
| dc.identifier.issn | 0567-7572 | |
| dc.identifier.other | ORCID: /0000-0001-6671-5568/work/91891226 | |
| dc.identifier.uri | https://hdl.handle.net/2164/16174 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85097321834&partnerID=8YFLogxK | en | 
| dc.identifier.url | https://arxiv.org/abs/1907.00624 | en | 
| dc.language.iso | eng | |
| dc.publisher | International Society for Horticultural Science | |
| dc.relation.ispartof | Acta Horticulturae | en | 
| dc.relation.ispartofseries | Acta Horticulturae | en | 
| dc.subject | Deep learning | en | 
| dc.subject | Ficus | en | 
| dc.subject | Growth | en | 
| dc.subject | Prediction | en | 
| dc.subject | Recurrent LSTM neural networks | en | 
| dc.subject | Stem diameter | en | 
| dc.subject | Tomato | en | 
| dc.subject | Yield rate | en | 
| dc.subject | QA75 Electronic computers. Computer science | en | 
| dc.subject | Horticulture | en | 
| dc.subject.lcc | QA75 | en | 
| dc.title | Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments | en | 
| dc.type | Conference item | en | 
Files
Original bundle
1 - 1 of 1
