Improved damage detectability in a wind turbine blade by optimal selection of vibration signal correlation coefficients
| dc.contributor.author | Hoell, Simon | |
| dc.contributor.author | Omenzetter, Piotr | |
| dc.contributor.institution | University of Aberdeen.Engineering | en |
| dc.contributor.institution | University of Aberdeen.Engineering | en |
| dc.contributor.institution | University of Aberdeen.Energy | en |
| dc.date.accessioned | 2016-12-05T10:28:13Z | |
| dc.date.available | 2016-12-05T10:28:13Z | |
| dc.date.issued | 2016-11 | |
| dc.description | Piotr Omenzetter and Simon Hoell’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 21 | |
| dc.format.extent | 4486630 | |
| dc.identifier | 68286440 | |
| dc.identifier | c458b71d-a19e-467d-892a-0981a86fe6b7 | |
| dc.identifier | 85002050738 | |
| dc.identifier.citation | Hoell, S & Omenzetter, P 2016, 'Improved damage detectability in a wind turbine blade by optimal selection of vibration signal correlation coefficients', Structural Health Monitoring, vol. 15, no. 6, pp. 685–705. https://doi.org/10.1177/1475921716657016 | en |
| dc.identifier.doi | 10.1177/1475921716657016 | |
| dc.identifier.iss | 6 | en |
| dc.identifier.issn | 1475-9217 | |
| dc.identifier.uri | http://hdl.handle.net/2164/7820 | |
| dc.identifier.url | http://dx.doi.org/10.1177/1475921717713843 | en |
| dc.identifier.vol | 15 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Structural Health Monitoring | en |
| dc.subject | damage detection | en |
| dc.subject | fast forward selection | en |
| dc.subject | genetic algorithm | en |
| dc.subject | optimal feature selection | en |
| dc.subject | partial autocorrelation function | en |
| dc.subject | principal component analysis | en |
| dc.subject | structural health monitoring | en |
| dc.subject | vibration based damage detection | en |
| dc.subject | wind turbines | en |
| dc.subject | TA Engineering (General). Civil engineering (General) | en |
| dc.subject.lcc | TA | en |
| dc.title | Improved damage detectability in a wind turbine blade by optimal selection of vibration signal correlation coefficients | en |
| dc.type | Journal article | en |
