NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance in Gastrointestinal Imaging
| dc.contributor.author | Chhetri, Anju | |
| dc.contributor.author | Korhonen, Jari | |
| dc.contributor.author | Gyawali, Prashnna K | |
| dc.contributor.author | Bhattarai, Binod | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.contributor.institution | University of Aberdeen.Machine Learning | en |
| dc.date.accessioned | 2025-07-01T13:50:01Z | |
| dc.date.available | 2025-07-01T13:50:01Z | |
| dc.date.issued | 2025-07-01 | |
| dc.description | The proceedings will be published as Lecture Notes in Computer Science (LNCS). | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 3990903 | |
| dc.identifier | 305344297 | |
| dc.identifier | 3b14da1f-9d83-4394-9c79-d7b8d4803648 | |
| dc.identifier.citation | Chhetri, A, Korhonen, J, Gyawali, P K & Bhattarai, B 2025, 'NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance in Gastrointestinal Imaging', Paper presented at MICCAI 2025: The 28th International Conference on Medical Image Computing and Computer Assisted Intervention , Daejon, Korea, Democratic People's Republic of, 23/09/25 - 27/09/25. https://doi.org/10.48550/arXiv.2506.15404 | en |
| dc.identifier.citation | conference | en |
| dc.identifier.doi | 10.48550/arXiv.2506.15404 | |
| dc.identifier.uri | https://hdl.handle.net/2164/25653 | |
| dc.identifier.url | https://conferences.miccai.org/2025/en/ | en |
| dc.language.iso | eng | |
| dc.subject | OOD | en |
| dc.subject | Neuron relevance | en |
| dc.subject | Gastrointestinal imaging | en |
| dc.subject | Explainable | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject.lcc | QA75 | en |
| dc.title | NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance in Gastrointestinal Imaging | en |
| dc.type | Conference paper | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Chhetri_etal_NERO_Conf_Paper_Submitted.pdf
- Size:
- 3.81 MB
- Format:
- Adobe Portable Document Format
