Machine learning in the prediction of cancer therapy
| dc.contributor.author | Rafique, Raihan | |
| dc.contributor.author | Islam, S. M.Riazul | |
| dc.contributor.author | Kazi, Julhash U. | |
| dc.contributor.institution | University of Aberdeen.Computing Science | en |
| dc.date.accessioned | 2023-10-05T15:30:00Z | |
| dc.date.available | 2023-10-05T15:30:00Z | |
| dc.date.issued | 2021-07-08 | |
| dc.description | Funding Information: This research was supported by the Crafoord Foundation (JUK), the Swedish Cancer Society (JUK), and the Swedish Childhood Cancer Foundation (JUK). Open Access funding is provided by Lund University. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 15 | |
| dc.format.extent | 163226 | |
| dc.identifier | 281140094 | |
| dc.identifier | 396d3773-d56f-4206-a59b-d1ddc86f1d2a | |
| dc.identifier | 85110763754 | |
| dc.identifier.citation | Rafique, R, Islam, S M R & Kazi, J U 2021, 'Machine learning in the prediction of cancer therapy', Computational and Structural Biotechnology Journal, vol. 19, pp. 4003-4017. https://doi.org/10.1016/j.csbj.2021.07.003 | en |
| dc.identifier.doi | 10.1016/j.csbj.2021.07.003 | |
| dc.identifier.issn | 2001-0370 | |
| dc.identifier.other | ORCID: /0000-0003-2968-9561/work/144004112 | |
| dc.identifier.uri | https://hdl.handle.net/2164/21854 | |
| dc.identifier.url | http://www.scopus.com/inward/record.url?scp=85110763754&partnerID=8YFLogxK | en |
| dc.identifier.vol | 19 | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Computational and Structural Biotechnology Journal | en |
| dc.subject | SDG 3 - Good Health and Well-being | en |
| dc.subject | Artificial intelligence | en |
| dc.subject | Convolutional neural network | en |
| dc.subject | Deep learning | en |
| dc.subject | Deep neural network | en |
| dc.subject | Drug combinations | en |
| dc.subject | Drug synergy | en |
| dc.subject | Elastic net | en |
| dc.subject | Factorization machine | en |
| dc.subject | Graph convolutional network | en |
| dc.subject | Higher-order factorization machines | en |
| dc.subject | Lasso | en |
| dc.subject | Matrix factorization | en |
| dc.subject | Monotherapy prediction | en |
| dc.subject | Ordinary differential equation | en |
| dc.subject | Random forests | en |
| dc.subject | Restricted Boltzmann machine | en |
| dc.subject | Ridge regression | en |
| dc.subject | Support vector machines | en |
| dc.subject | Variational autoencoder | en |
| dc.subject | Visible neural network | en |
| dc.subject | QA75 Electronic computers. Computer science | en |
| dc.subject | Biotechnology | en |
| dc.subject | Biophysics | en |
| dc.subject | Structural Biology | en |
| dc.subject | Biochemistry | en |
| dc.subject | Genetics | en |
| dc.subject | Computer Science Applications | en |
| dc.subject.lcc | QA75 | en |
| dc.title | Machine learning in the prediction of cancer therapy | en |
| dc.type | Journal item | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Rafique_etal_CSBJ_Machine_Learning_In_VoR.pdf
- Size:
- 159.4 KB
- Format:
- Adobe Portable Document Format
