University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Improving Subsurface Characterisation with ‘Big Data’ Mining and Machine Learning

dc.contributor.authorBrackenridge, Rachel
dc.contributor.authorDemyanov, Vasily
dc.contributor.authorVashutin , Oleg
dc.contributor.authorNigmatullin , Ruslan
dc.contributor.institutionUniversity of Aberdeen.Geology and Geophysicsen
dc.date.accessioned2022-02-08T20:42:00Z
dc.date.available2022-02-08T20:42:00Z
dc.date.issued2022-01-31
dc.descriptionFunding: This research was supported by Wood Mackenzie through funding of a Postdoctoral Research Associate position at Heriot Watt University, and through access to data from two basins. Acknowledgments: This work was supported by Wood Mackenzie through funding research collab- oration with Heriot-Watt University. All the data were anonymised and supplied by Wood Mackenzie and authors are thankful for the opportunity to publish the outcomes of this research. Authors also thank Mikhail Kanevski of University of Lausanne for the peer exchange on feature selection and the opportunities opened during his course on Machine Learning hands-on applications. Authors acknowledge the use of Orange Data Mining [27] and ML Office for SOM application [30]. We thank Susan Agar, who reviewed the paper most comprehensively and helped improve it along with two anonymous reviewers.en
dc.description.statusPeer revieweden
dc.format.extent23
dc.format.extent12582980
dc.identifier212989084
dc.identifier0f848011-5b11-4ea0-b487-996629afbb57
dc.identifier85124023265
dc.identifier.citationBrackenridge, R, Demyanov, V, Vashutin , O & Nigmatullin , R 2022, 'Improving Subsurface Characterisation with ‘Big Data’ Mining and Machine Learning', Energies, vol. 15, no. 3, 1070. https://doi.org/10.3390/en15031070en
dc.identifier.doi10.3390/en15031070
dc.identifier.iss3en
dc.identifier.issn1996-1073
dc.identifier.otherORCID: /0000-0002-0572-314X/work/107908622
dc.identifier.urihttps://hdl.handle.net/2164/18045
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85124023265&partnerID=8YFLogxKen
dc.identifier.vol15en
dc.language.isoeng
dc.relation.ispartofEnergiesen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject2040 Energy Tranistionen
dc.subjectreservoiren
dc.subjectsubsurface characterisationen
dc.subjectbig dataen
dc.subjectunsupervised learningen
dc.subjectsupervised learningen
dc.subjectmultivariant analysisen
dc.subjectmachine learningen
dc.subjecthydrocarbon explorationen
dc.subjectQE Geologyen
dc.subject.lccQEen
dc.titleImproving Subsurface Characterisation with ‘Big Data’ Mining and Machine Learningen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Brackenridge_etal_E_Improving_Subfarce_Characterisation_VoR.pdf
Size:
12 MB
Format:
Adobe Portable Document Format

Collections