University of Aberdeen logo

AURA - Aberdeen University Research Archive

 

Propagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictions

dc.contributor.authorTrifonova, Neda
dc.contributor.authorWihsgott, Juliane
dc.contributor.authorScott, Beth
dc.contributor.institutionUniversity of Aberdeen.Biological Sciencesen
dc.contributor.institutionUniversity of Aberdeen.Centre for Energy Transitionen
dc.contributor.institutionUniversity of Aberdeen.Marine Alliance for Science and Technology for Scotland (MASTS)en
dc.date.accessioned2025-11-18T10:01:01Z
dc.date.issued2025-12
dc.descriptionOpen Access via the Elsevier agreement The authors would also like to thank the following people for providing data to this study: Debbie Russel, James Waggitt, Amy Walker, Hannah Fougner, Andrew Logie, Mirko Hauswirth, Tim Dunn, Maria Pagla, Oliver Boisseau, Jared Wilson, Jen Graham, Kate Abbott, Sally Hamilton, Alex Banks, Phil Hammond, Peter Evans, Chelsea Bradbury, Paul Thompson, Nele Markones, Alice Walters, Andrea Salkeld. For detailed information on their organizations and contacts, please refer to the SI.en
dc.description.statusPeer revieweden
dc.format.extent14
dc.format.extent2711958
dc.identifier310928205
dc.identifier3015b9b9-87ed-46ae-b724-186a3f8a19b6
dc.identifier.citationTrifonova, N, Wihsgott, J & Scott, B 2025, 'Propagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictions', Ecological Informatics, vol. 92, 103510. https://doi.org/10.1016/j.ecoinf.2025.103510en
dc.identifier.doi10.1016/j.ecoinf.2025.103510
dc.identifier.issn1574-9541
dc.identifier.otherRIS: urn:16DEA2EB62B3BBF62E110B711BFD6414
dc.identifier.otherORCID: /0000-0001-5412-3952/work/197191757
dc.identifier.urihttps://hdl.handle.net/2164/26455
dc.identifier.urlhttps://github.com/bayesnet/bnten
dc.language.isoeng
dc.relation.ispartofEcological Informaticsen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subjectSDG 13 - Climate Actionen
dc.subjectSDG 14 - Life Below Wateren
dc.subjectClimate changeen
dc.subjectHidden variableen
dc.subjectFunctional ecosystem changeen
dc.subjectBio-physicalen
dc.subjectIndicatorsen
dc.subjectMarine renewable energyen
dc.subjectQL Zoologyen
dc.subjectSupplementary Dataen
dc.subjectDASen
dc.subject.lccQLen
dc.titlePropagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictionsen
dc.typeJournal articleen

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Trifonova_etal_EI_Propagating_uncertainty_from_VOR.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format

Collections