Propagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictions
| dc.contributor.author | Trifonova, Neda | |
| dc.contributor.author | Wihsgott, Juliane | |
| dc.contributor.author | Scott, Beth | |
| dc.contributor.institution | University of Aberdeen.Biological Sciences | en |
| dc.contributor.institution | University of Aberdeen.Centre for Energy Transition | en |
| dc.contributor.institution | University of Aberdeen.Marine Alliance for Science and Technology for Scotland (MASTS) | en |
| dc.date.accessioned | 2025-11-18T10:01:01Z | |
| dc.date.issued | 2025-12 | |
| dc.description | Open Access via the Elsevier agreement The authors would also like to thank the following people for providing data to this study: Debbie Russel, James Waggitt, Amy Walker, Hannah Fougner, Andrew Logie, Mirko Hauswirth, Tim Dunn, Maria Pagla, Oliver Boisseau, Jared Wilson, Jen Graham, Kate Abbott, Sally Hamilton, Alex Banks, Phil Hammond, Peter Evans, Chelsea Bradbury, Paul Thompson, Nele Markones, Alice Walters, Andrea Salkeld. For detailed information on their organizations and contacts, please refer to the SI. | en |
| dc.description.status | Peer reviewed | en |
| dc.format.extent | 14 | |
| dc.format.extent | 2711958 | |
| dc.identifier | 310928205 | |
| dc.identifier | 3015b9b9-87ed-46ae-b724-186a3f8a19b6 | |
| dc.identifier.citation | Trifonova, N, Wihsgott, J & Scott, B 2025, 'Propagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictions', Ecological Informatics, vol. 92, 103510. https://doi.org/10.1016/j.ecoinf.2025.103510 | en |
| dc.identifier.doi | 10.1016/j.ecoinf.2025.103510 | |
| dc.identifier.issn | 1574-9541 | |
| dc.identifier.other | RIS: urn:16DEA2EB62B3BBF62E110B711BFD6414 | |
| dc.identifier.other | ORCID: /0000-0001-5412-3952/work/197191757 | |
| dc.identifier.uri | https://hdl.handle.net/2164/26455 | |
| dc.identifier.url | https://github.com/bayesnet/bnt | en |
| dc.language.iso | eng | |
| dc.relation.ispartof | Ecological Informatics | en |
| dc.subject | SDG 7 - Affordable and Clean Energy | en |
| dc.subject | SDG 13 - Climate Action | en |
| dc.subject | SDG 14 - Life Below Water | en |
| dc.subject | Climate change | en |
| dc.subject | Hidden variable | en |
| dc.subject | Functional ecosystem change | en |
| dc.subject | Bio-physical | en |
| dc.subject | Indicators | en |
| dc.subject | Marine renewable energy | en |
| dc.subject | QL Zoology | en |
| dc.subject | Supplementary Data | en |
| dc.subject | DAS | en |
| dc.subject.lcc | QL | en |
| dc.title | Propagating uncertainty from physical and biogeochemical drivers through to top predators in dynamic Bayesian ecosystem models improves predictions | en |
| dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
- Name:
- Trifonova_etal_EI_Propagating_uncertainty_from_VOR.pdf
- Size:
- 2.59 MB
- Format:
- Adobe Portable Document Format
