Slingsby, JamesScott, BethKregting, LouiseMcIlvenny, JasonWilson, JaredHelleux, FannyWilliamson, Benjamin J.2025-03-212025-03-212024-10-01Slingsby, J, Scott, B, Kregting, L, McIlvenny, J, Wilson, J, Helleux, F & Williamson, B J 2024, 'An experimental methodology for automated detection of surface turbulence features in tidal stream environments', Sensors, vol. 24, no. 19, 6170. https://doi.org/10.3390/s241961701424-8220ORCID: /0000-0001-5412-3952/work/180764433https://hdl.handle.net/2164/25185Acknowledgments We gratefully acknowledge the support of colleagues at Marine Scotland Science, the crew/scientists of the MRV Scotia 2016/2018 cruises (particularly Chief Scientists Eric Armstrong and Adrian Tait), and ERI interns: Gael Gelis and Martin Forestier.141861353engSDG 7 - Affordable and Clean EnergySDG 14 - Life Below Waterenvironmental monitoringremote sensingmarine renewablesmachine learningdeep learningQH301 BiologyGC OceanographySupplementary DataDASQH301GCAn experimental methodology for automated detection of surface turbulence features in tidal stream environmentsJournal article10.3390/s241961702419