Dhanoa, M SLouro, AranzazuCardenas, Laura M.Shepherd, AnitaSanderson, RuthLopez, SecundinoFrance, James2021-04-162021-04-162020-09-15Dhanoa, M S, Louro, A, Cardenas, L M, Shepherd, A, Sanderson, R, Lopez, S & France, J 2020, 'A strategy for modelling heavy-tailed greenhouse gases (GHG) data using the generalised extreme value distribution : Are we overestimating GHG flux using the sample mean?', Atmospheric Environment, vol. 237, 117500. https://doi.org/10.1016/j.atmosenv.2020.1175001352-2310ORCID: /0000-0003-1902-5147/work/79058622https://hdl.handle.net/2164/16268CRediT authorship contribution statement M.S. Dhanoa: Conceptualization, Methodology, Formal analysis, Writing - original draft. A. Louro: Resources, Data curation. L.M. Cardenas: Funding acquisition, Writing - original draft, Writing - review & editing. A. Shepherd: Writing - original draft. R. Sanderson: Writing - review & editing. S. Lopez: Writing - review & editing. J. France: Methodology, Writing - review & editing. The work was supported by the Biotechnology and Biological Sciences Research Council (BB/P01268X/1, BBS/E/C/000I0320).81287748engnitrous oxidecarbon dioxideGeneralised extreme valueFinney correctionHeavy-tailed dataskewness correctionCarbon dioxideNitrous oxideSkewness correctionQH301 BiologyGeneral Environmental ScienceAtmospheric ScienceBiotechnology and Biological Sciences Research Council (BBSRC)BB/P01268X/1BBS/E/C/000I0320QH301A strategy for modelling heavy-tailed greenhouse gases (GHG) data using the generalised extreme value distribution : Are we overestimating GHG flux using the sample mean?Journal article10.1016/j.atmosenv.2020.117500http://www.scopus.com/inward/record.url?scp=85087308864&partnerID=8YFLogxK237