Bastrikov, VladislavMacbean, NatashaBacour, CédricSantaren, DiegoKuppel, SylvainPeylin, Philippe2019-01-092019-01-092018-11-30Bastrikov, V, Macbean, N, Bacour, C, Santaren, D, Kuppel, S & Peylin, P 2018, 'Land surface model parameter optimisation using in situ flux data : Comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2)', Geoscientific Model Development, vol. 11, no. 12, pp. 4739-4754. https://doi.org/10.5194/gmd-11-4739-20181991-959Xhttp://hdl.handle.net/2164/11749This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia and USCCC. We acknowledge the financial support to the eddy covariance data harmonisation provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universiteì Laval, Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California – Berkeley and the University of Virginia.161439100engSDG 13 - Climate ActionSDG 15 - Life on LandQE GeologyModelling and SimulationGeneral Earth and Planetary SciencesQELand surface model parameter optimisation using in situ flux data : Comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1.9.5.2)Journal article10.5194/gmd-11-4739-2018http://www.scopus.com/inward/record.url?scp=85039871600&partnerID=8YFLogxK1112